
into  the  early  stages of statistical 
behavior  through  period  doubling. 
Moreover, 6 of Eq. (3) is again the  rate 
of onset of complexity,  and Q of Eq. (3 1) 
is again  the rate  at which the  spacing of 
adjacent  attractor points is vanishing. 
Indeed,  the  one-dimensional  theory 
determines all behavior of Eq. (61) in the 
onset regime. 

In  fact,  dimensionality  is  irrelevant. 
The  same  theory,  the  same  numbers,  etc. 
also work for  iterations in N dimensions, 
provided that  the system  goes  through 
period  doubling. The basic  process, 
wherever  period  doubling  occurs ad 
infinitum, is functional  composition  from 
one level to the  next.  Accordingly,  a 
modification of Eq. (29) is at  the  heart of 
the  process, with composition  on  func- 
tions  from N dimensions to N dimen- 
sions.  Should  the  specific  iteration  func- 
tion contract N-dimensional  volumes  (a 
dissipative  process),  then in general  there 
is one direction of slowest  contraction, 
so that after  a  number of iterations  the Fig. 12a. The most stable I-cycle of D@ng’S equation  in phase space (xi). 
process  is effectively one-dimensional. 
Put differently,  the  one-dimensional  solu- 
tion to m. (29)  is  always  a  solution to its 
N-dimensional  analogue. It is the rele- 
vant fixed point of the  analogue if the 
iteration  function is contractive. 

Universal Behavior in Differential 
Systems 

The next  step of generalization  is  to 
include  systems of differential  equations. 
A prototypic  equation is Duffing’s os- 
cillator,  a  driven damped  anharmonic 
oscillator, 

+ k i  + x3 = bsin 2n t .  (62) 

The  periodic  drive of period 1 determines 
a natural  time  step.  Figure  12a  depicts  a 
period 1 attractor, usually  referred to  as 
a limit cycle. It is an  attractor because, 
for a range of initial  conditions,  the  solu- 
tion to Eq. (62)  settles  down to the  cycle. 
It is period 1 because  it  repeats  the Same Fig. 12b. The most stable 2 - c ~ ~ ~  of M n g ’ s  equation.  Observe  that it is two dis- 
curve in every  period of the drive. placed copies of Fig. 12a. 
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Fig. 12c. The  most stable 4-cycle of  Dz@ng’s equation.  Observe that the disphced 
copies of Fig. 12b have  either  a broad  or a  narrow separation. 

Figures 12b  and  c  depict  attractors  of 
periods 2 and  4  as  the friction or  damp- 
ing constant  k in Eq.  (62) is reduced 
systematically. The  parameter values k 
= A,, X,, A,, ..., are  the  damping  cons- 
tants  corresponding  to  the  most  stable 
2“-cycle in analogy  to  the A,, of the one- 
dimensional  functional iteration. Indeed, 
this oscillator’s period  doubles (at least 
numerically!) ad infinitum. In  fact,  by  k 
= h,, the 6 ,  of Eq. (2) has converged to 
4.69. Why is this?  Instead of considering 
the entire trajectories  as  shown in Fig. 
12, let us consider  only  where  the  trajec- 
tory  point  is  located every 1 period of 
the drive. The  I-cycle then  produces 
only  one  point,  while  the  2-cycle 
produces  a  pair of points, and so forth. 
This time-one mag [if the  trajectory 
point is (x$) now,  where is it one period 
later?]  is by virtue of the differential 
equation  a  smooth  and invertible func- 
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tion in two  dimensions. Qualitatively, it 
looks like the  map of Eq. (61). In the 
present  state of mathematics, little can 
be said about  the  analytic behavior of 
time-one  maps;  however, since our 
theory is universal, it makes  no dif- 
ference that we don’t  know the explicit 
form.  We still can  determine  the  com- 
plete quantitative  behavior of  Eq. (62) in 
the  onset  regime  where the motion  tends 
to aperiodicity. If we already  know, by 
measurement,  the precise form of the 
trajectory after a few period  doublings, 
we can  compute  the form of the trajec- 
tory  as   the  f r ic t ion  is   reduced 
throughout  the  region of onset of com- 
plexity by carefully using the full power 
of the universality theory  to determine 
the  spacings of elements of a cycle. 

Let us see how this works in some 
detail. Consider  the  time-one  map of the 

Duffing’s oscillator in the  superstable 2”- 
cycle. In particular, let us focus  on  an 
element at which the scaling function o 
(Fig. 10) has the value oo, and for which 
the  next iterate of this element also has 
the scaling o,,. (The  element  is  not at  a 
big discontinuity of 0.) It  is  then intuitive 
that if we had  taken  our  time-one ex- 
amination of the  trajectory  at  values of 
time  displaced from  our first choice, we 
would have  seen the same scaling oo for 
this part of the  trajectory.  That is, the 
differential equations will extend the 
map-scaling  function  continuously to  a 
function  along  the entire trajectory so 
that, if two  successive  time-one  elements 
have scaling o,,, then the entire stretch of 
trajectory  over this unit time interval has 
scaling 0,. In the last section, we were 
motivated to  construct o as  a function of 
t along an interval precisely towards this 
end. 

To implement this idea, the first step is 
to define the  analogue  of d,. We require 
the spacing  between the trajectory  at 
time t and  at time T,/2 where  the  period 
of the  system in the  2”-cycle is 

T, z 2”To. (63) 

That is, we define 

d,(t)  Xn(t) - Xn(t + T,/2) . (64) 

(There is a  d for each of the N variables 
for  a system of N differential equations.) 
Since o was  defined as periodic of period 
1, we now have 

dn+,(t) - o(t/Tn+Jdn(t) * (65) 

The  content of Eq. (65), based on the  n- 
dependence arising solely through  the T, 
in o, and  not  on  the detailed form of o, 
already implies a  strong scaling predic- 
tion, in that  the  ratio 

dll, 
’ 

when plotted with t  scaled so that T, = 
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1, is a  function independent of n. Thus if 
Eq. (65) is  true  for some o, whatever it 
might be, then  knowing  xn(t), we can 
compute d,(t) and from  Eq. (65) dn+,(t). 
As a  consequence of periodicity, Eq. 
(64) for  n ---f n + 1 can be solved  for 
xn+,(t)  (through  a  Fourier  transform). 
That is, if we have  measured any chosen 
coordinate  of  the  system in its 2"-cycle, 
we can compute  its  time  dependence in 
the 2"+'-cycle. Because  this  procedure is 
recursive, we can  compute  the  coor- 
dinate's  evolution  for all higher cycles 
through  the  infinite  period-doubling 
limit. If Eq. (65) is true  and cr not  known, 
then  by  measurement at  a 2"-cycle and 
at a 2"+'-cycle, cr could be constructed 
from  Eq. (65), and hence all higher  order 
doublings would again be determined. 
Accordingly, Eq. (65) is a very powerful 
result-  However, we know  much  more. Fig. 13a. The ratio of nearest  copy  separations in the 8 - ~ &  and 16-cycle for D f l i  
The universality  theory tells US that ingk eomtion. 
period  doubling is universal  and that 
there is a unique function cr which, in- 
deed, we have  computed in the  previous 
section.  Accordingly, by measuring x(t) 
in some chosen 2"-cycle (the higher the 
n,  the  more  the  number of effective 
parameters  to be determined  empirically, 
and  the more precise  are  the  predic- 
tions), we now  can  compute  the  entire 
evolution of the  system  on  its  route  to 
turbulence. 

How well does  this  work?  The  em- 
pirically  determined cr [for Eq. (62)] of 
Eq.  (65) is shown  for  n = 3 in Fig.  13a 
and  n = 4 in Fig.  13b.  The  figures were 
constructed by plotting  the  ratios of d,,, 
and d, scaled  respective to  T = 16 in 
Fig.  13a and T = 32 in Fig. 13b. 
Evidently  the  scaling  law Eq. (65) is be- 
ing obeyed.  Moreover,  on  the  same 
graph Fig. 14  shows  the  empirical o for 
n = 4 and  the  recursion  theoretical o of 
Fig.  10. The reader  should  observe  the 
detail-by-detail  agreement of the  two.  In 
fact, if we use  Eq.  (65)  and  the 
theoretical cr with n = 2 as empirical in- 
put,  the  n = 5 frequency  spectrum  agrees Fig. 13b. The same quanti@ as in  Fig. 13a, but for the 16-cycle and 32-cycle. Here, the 
with the  empirical  n = 5 spectrum  to time ax is  is twice as compressed. 
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Fig. 24. Figure 13b overlayed with Fig. IO compares  the  universal  scaling function o with  the  empirically  determined  scaling  of 
nearest  copy  separations from the 16-cycle to the 32-cycle for  Dq#ing's  equation. 

within 10%. (The  n = 4 determines  n = 5 
to within l%.) Thus  the  asymptotic un- 
iversality theory is correct and is already 
well obeyed,  even  by  n = 2! 

Equations (64) and (65) are solved, as 
mentioned  above,  through  Fourier 
transforming.  The result is a  recursive 
scheme  that determines  the  Fourier coef- 
ficients of x,+l(t) in terms of those of 
x,(t) and  the  Fourier  transform of  the 
(known)  function cr(t). To employ the 
formula  accurately  requires  knowledge 
of the entire spectrum of x, (amplitude 
and phase)  to  determine  each coefficient 
of x,+1. However,  the  formula  enjoys an 

approximate local prediction, which 
roughly  determines  the  amplitude of a 
coefficient of x,+~ in terms of the am- 
plitudes (alone) of x, near  the  desired fre- 
quency  of x,+1. 

What  does  the  spectrum of a  period- 
doubling  system look like? Each time the 
period  doubles, the  fundamental fre- 
quency  halves;  period  doubling in the 
continuum  version  is  termed  half- 
subharmonic  bifurcation,  a  typical 
behavior of coupled  nonlinear differen- 
tial  equations.  Since  the  motion almost 
reproduces itself every  period of the 
drive, the  amplitude  at this original fre- 

quency is high. At  the first subharmonic 
halving, spectral  components of the odd 
halves of the drive frequency  come in. 
On the  route to aperiodicity  they 
saturate  at  a  certain amplitude.  Since the 
motion  more  nearly  reproduces itself 
every  two  periods of drive, the  next 
saturated  subharmonics,  at the odd 
fourths of the original frequency, are 
smaller still than  the first ones,  and so 
on,  as  each set of odd 2"ths comes  into 
being. A  crude  approximate  prediction 
of the  theory is that whatever the system, 
the  saturated  amplitudes of each set of 
successively  lower  half-frequencies 
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define  a  smooth  interpolation  located 8.2 
dB below the  smooth  interpolation of the 
previous  half-frequencies.  [This is shown 
in Fig. 15 for Eq. (62).] After  subhar- 
monic  bifurcations ad infinitum, the 
system  is  now no longer  periodic;  it  has 
developed  a  continuous broad  spectrum 
down to zero  frequency with a  definite 
internal  distributiori of the  energy.  That 
is,  the  system  emerges I’rom this  process 
having  developed  the  beginnings of 
broad-band  noise  of  a  determined 
nature.  This  process  also  occurs in the 
onset of turbulence in a  fluid. 

The Onset of Turbulence 

The  existing idea of the  roote to tur- 
bulence is Landau’s 194 1 theory.  The 
idea  is that  a  system becomes  turbulent 
through  a  succession of instabilities, 
where  each  instability  creates  a new 
degree of freedom  (through an indeter- 
minate  phase) of a  time-periodic  nature 
with the  frequencies  successively  higher 
and  incommensurate (not harmonics); 
because  the  resulting  motion is the 
superposition  of  these  modes,  it is quasi- 
periodic. 

In  fact, it  is experimentally  clear that 
quasi-periodicity is incorrect.  Rather,  to 
produce  the  observed  noise of rapidly 
decaying  correlation  the  spectrum  must 
become continuous (broad-band  noise) 
down to zero  frequency.  The  defect  can 
be  eliminated  through  the  production of 
successive  half-subharmonics, which 
then  emerge as  an allowable  route to tur- 
bulence. If the  general  idea  of  a  succes- 
sion of instabilities is maintained,  the 
new modes do not have  indeterminate 
phases.  However,  only  a  small  number 
of modes need be excited to produce  the 
required  spectrum.  (The  number  of 
modes  participating in the  transition  is, 
as of now, an open  experimental  ques- 
tion.) Indeed,  knowledge of the  phases of 
a  small  number of amplitudes  at an  early 
stage of period  doubling suffices to 
determine  the  phases of the  transition 

r 
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Fig. 15. The subharmonic  spectrum of Df lng’s  equation in the 32-cycle. The dotted 
curve is an interpolation of the odd 32nd subharmonics. The shorter  dashed  curve is 
constructed similarly for the odd 16th subharmonics, but lowered by 8.2 dB.  The 
longer  dashed  curve of the 8th subharmonics has been  dropped  by  16.4 dB, and the 
solid  curve  of the 4th subharmonics by 24.6 dB. 

Fig. 16. The experimental spectrum (redrawn from Libchaber and Maurer) of a  con- 
vecting fluid at its transition to turbulence. The dashed  lines  result from dropping  a 
horizontal line down through the odd 4th subharmonics  (labelled 2) by 8.2 and 16.4 
dB. 
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spectrum.  What is important is that  a 
purely  causal  system can and  does 
possess essentially statistical properties. 
Invoking ad hoc statistics is unnecessary 
and generally  incompatible  with  the  true 
dynamics. 

A full theoretical  computation of the 
onset  demands  the  calculation of suc- 
cessive instabilities. The  method  used 
traditionally is perturbative.  We  start  at 
the  static solution  and  add  a  small  time- 
dependent piece. The fluid equations  are 
linearized about  the  static solution, and 
the stability of the  perturbation is 
studied. To date, only  the first instability 
has been computed analytically. Once 
we know  the parameter value  (for  exam- 
ple, the Rayleigh  number) for  the  onset 
of this first time-varying instability, we 
must  determine  the  correct  form of the 
solution after  the  perturbation  has  grown 
large beyond the linear regime. To this 
solution we add  a new time-dependent 
perturbative  mode,  again linearized (now 
about a time-varying,  nonanalytically 
available solution) to discover the new 
instability. To date,  the  second  step of 
the  analysis  has  been  performed  only 
numerically.  This  process, in principle, 
can be repeated  again  and  again until a 
suitably  turbulent  flow  has  been  ob- 
tained. At  each  successive  stage, the 
computation  grows successively  more 
intractable. 

However, it is just  at this point  that 
the  universality  theory  solves  the 
problem; it works  only after enough in- 

stabilities have  entered to  reach  the 
asymptotic  regime.  Since  just  two  such 
instabilities already  serve  as  a  good ap- 
proximate  starting point, we  need only  a 
few parameters for each flow to em- 
power  the  theory to complete the hard 
part of  the infinite cascade of more com- 
plex instabilities. 

Why  should  the  theory  apply?  The 
fluid equations  make  up  a  set of coupled 
field equations.  They  can be spatially 
Fourier-decomposed  to  an infinite set of 
coupled  ordinary differential equations. 
Since  a flow is viscous, there is some 
smallest  spatial scale below which  no 
significant excitation exists. Thus,  the 
equations  are effectively a finite coupled 
set of nonlinear differential equations. 
The  number of equations in the set is 
completely irrelevant. The universality 
theory is generic  for  such  a dissipative 
system  of  equations.  Thus it is possible 
that  the flow exhibits period  doubling. If 
it  does,  then  our  theory  applies. 
However, to prove that  a given  flow (or 
any  flow)  actually  should exhibit dou- 
bling  is well beyond  present un- 
derstanding. All  we can  do is experi- 
ment. 

Figure 16 depicts the  experimentally 
measured  spectrum of a convecting li- 
quid  helium cell at  the  onset of tur- 
bulence.  The  system  displays  measurable 
period  doubling  through  four or five 
levels; the  spectral  components  at  each 
set of  odd  half-subharmonics  are labelled 
with the level. With  n = 2 taken  as 

asymptotic, the dotted lines show the 
crudest  interpolations implied for the n = 
3, n = 4 component.  Given  the  small 
amount  of amplitude data,  the interpola- 
tions are  perforce  poor, while ignorance 
of higher  odd  multiples  prevents  con- 
struction  of  any significant interpolation 
at  the  right-hand side. Accordingly, to 
do  the  crudest test, the  farthest right- 
hand  amplitude  was  dropped,  and  the 
oscillations were  smoothed  away by 
averaging.  The  experimental results, 
-8.3 dB and -8.4 dB, are in surprisingly 
good  agreement with the theoretical 8.2! 

From this good  experimental agree- 
ment and  the many  period  doublings as 
the clincher, we can be confident that  the 
measured  flow has  made its transition 
according  to  our  theory.  A  measurement 
of 6 from its fundamental definition 
would, of course, be altogether  convinc- 
ing. (Experimental  resolution is insuf- 
ficient at present.) However, if we work 
backwards, we find that  the several per- 
cent  agreement in 8.2 dB is an ex- 
perimental  observation of a in the system 
to  the  same  accuracy.  Thus, the present 
method  has  provided  a  theoretical 
calculation of the  actual  dynamics in a 
field where  such  a  feat  has been impossi- 
ble since the construction of the  Navier- 
Stokes  equations. In  fact,  the scaling law 
Eq. (65) transcends  these  equations,  and 
applies to  the true equations,  whatever 
they may be. 
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